NOTEBOOK COMPUTER



laptop is a personal computer for mobile use. A laptop integrates most of the typical components of a desktop computer, including a display, a keyboard, a pointing device (atouchpad, also known as a trackpad or pointing stick) and speakers into a single unit. A laptop is powered by mains electricity via an AC adapter, and can be used away from an outlet using a rechargeable battery.
Portable computers, originally monochrome CRT-based and developed into the modern laptops, were originally considered to be a small niche market, mostly for specialized field applications such as the military, accountants and sales representatives. As portable computers became smaller, lighter, cheaper, more powerful and as screens became larger and of better quality, laptops became very widely used for all sorts of purposes.
History of Notebook Computer
As the personal computer became feasible in the early 1970s, the idea of a portable personal computer followed. A "personal, portable information manipulator" was imagined by Alan Kay atXerox PARC in 1968, and described in his 1972 paper as the "Dynabook".
The IBM SCAMP project (Special Computer APL Machine Portable), was demonstrated in 1973. This prototype was based on the PALM processor (Put All Logic In Microcode).
The IBM 5100, the first commercially available portable computer, appeared in September 1975, and was based on the SCAMP prototype.
As 8-bit CPU machines became widely accepted, the number of portables increased rapidly. The Osborne 1, released in 1981, used the Zilog Z80 and weighed 23.6 pounds (10.7 kg). It had no battery, a 5 in (13 cm) CRT screen, and dual 5.25 in (13.3 cm) single-density floppy drives. In the same year the first laptop-sized portable computer, the Epson HX-20, was announced.The Epson had a LCD screen, a rechargeable battery, and a calculator-size printer in a 1.6 kg (3.5 lb) chassis. Both Tandy/RadioShack and HP also produced portable computers of varying designs during this period.
The first laptops using the flip form factor appeared in the early 1980s. The Dulmont Magnum was released in Australia in 1981–82, but was not marketed internationally until 1984–85. The $8,150 ($18,540 today) GRiD Compass 1100, released in 1982, was used at NASA and by the military among others. The Gavilan SC, released in 1983, was the first computer described as a "laptop" by its manufacturer. From 1983 onward, several new input techniques were developed and included in laptops, including the touchpad (Gavilan SC, 1983), the pointing stick (IBM ThinkPad 700, 1992) and handwriting recognition (Linus Write-Top, 1987). Some CPUs, such as the 1990 Intel i386SL, were designed to use minimum power to increase battery life of portable computers, and were supported by dynamic power management features such as Intel SpeedStep and AMD PowerNow! in some designs.

Classification of Notebook Computer

The term "laptop" can refer to a number of classes of small portable computers:
  • Full-size Laptop: A laptop large enough to accommodate a "full-size" keyboard (a keyboard with the minimum QWERTY key layout, which is at least 13.5 keys across that are on ¾ (0.750) inch centers, plus some room on both ends for the case). The measurement of at least 11 inches across has been suggested as the threshold for this class. The first laptops were the size of a standard U.S. "A size" notebook sheet of paper (8.5 × 11 inches), but later "A4-size" laptops were introduced, which were the width of a standard ISO 216 A4 sheet of paper (297 mm, or about 11.7 inches), and added a vertical column of keys to the right and wider screens. It can also be laid sideways when not in use.
  • Netbook: A smaller, lighter, more portable laptop. It is also usually cheaper than a full-size laptop, but has fewer features and less computing power. Smaller keyboards can be more difficult to operate. There is no sharp line of demarcation between netbooks and inexpensive small laptops; some 11.6" models are marketed as netbooks. Since netbook laptops are quite small in size, netbooks typically do not come with an internal optical drive.
  • Tablet PC: these have touch screens. There are "convertable tablets" with a full keyboard where the screen rotates to be used atop the keyboard, and "slate" form-factor machines which are usually touch-screen only (although a few older models feature very small keyboards along the sides of the screen.)
  • Rugged: Engineered to operate in tough conditions (mechanical shocks, extreme temperatures, wet and dusty environments, etc.)

File:Toughbook-cf-m34 4.jpg

Components of Notebook Computer

The basic components of laptops are similar in function to their desktop counterparts, but areminiaturized, adapted to mobile use, and designed for low power consumption. Because of the additional requirements, laptop components are usually of inferior performance compared to similarly priced desktop parts. Furthermore, the design bounds on power, size, and cooling of laptops limit the maximum performance of laptop parts compared to that of desktop components.
The following list summarizes the differences and distinguishing features of laptop components in comparison to desktop personal computer parts:
A SODIMM memory module.
  • Memory (RAM)SO-DIMM memory modules that are usually found in laptops are about half the size of desktop DIMMs.] They may be accessible from the bottom of the laptop for ease of upgrading, or placed in locations not intended for user replacement such as between the keyboard and the motherboard. Currently, most midrange laptops are factory equipped with 3–4 GB of DDR2 RAM, while some higher end notebooks feature up to 32 GB of DDR3 memory. Netbooks however, are commonly equipped with only 1 GB of RAM to keep manufacturing costs low.
  • Expansion cards: A PC Card (formerly PCMCIA) or ExpressCard bay for expansion cards is often present on laptops to allow adding and removing functionality, even when the laptop is powered on. Some subsystems (such as EthernetWi-Fi, or a cellular modem) can be implemented as replaceable internal expansion cards, usually accessible under an access cover on the bottom of the laptop. Two popular standards for such cards are MiniPCI and its successor, the PCI Express Mini.
  • Power supply: Laptops are typically powered by an internal rechargeable battery that is charged using an external power supply, which outputs a DC voltage typically in the range of 7.2– 24 volts. The power supply is usually external, and connected to the laptop through a AC connector cable. It can charge the battery and power the laptop simultaneously; when the battery is fully charged, the laptop continues to run on power supplied by the external power supply. The charger adds about 400 grams (1 lb) to the overall "transport weight" of the notebook.
  • Battery: Current laptops utilize lithium ion batteries, with more recent models using the new lithium polymer technology. These two technologies have largely replaced the older nickel metal-hydride batteries. Typical battery life for standard laptops is two to five hours of light-duty use, but may drop to as little as one hour when doing power-intensive tasks. A battery's performance gradually decreases with time, leading to an eventual replacement in one to three years, depending on the charging and discharging pattern. This large-capacity main battery should not be confused with the much smaller battery nearly all computers use to run the real-time clock and to store the BIOS configuration in the CMOS memory when the computer is off. Lithium-ion batteries do not have a memory effect as older batteries may have. The memory effect happens when one does not use a battery to its fullest extent, then recharges the battery. New innovations in laptops and batteries have seen new possible matchings which can provide up to a full 24 hours of continued operation, assuming average power consumption levels. An example of this is the HP EliteBook 6930p when used with its ultra-capacity battery.
  • Video display controller: On standard laptops the video controller is usually integrated into the chipset to conserve power. This tends to limit the use of laptops for gaming and entertainment, two fields which have constantly escalating hardware demands, and because the integrated chipset is very difficult to upgrade for a standard user, laptops may grow obsolete quickly for use in gaming and entertainment. Higher-end laptops and desktop replacements in particular often come with dedicated graphics processors on the motherboard or as an internal expansion card. These mobile graphics processors are comparable in performance to mainstream desktop graphic accelerator boards. A few notebooks have switchable graphics with both an integrated and discrete card installed. The user can choose between using integrated graphics when battery life is important and dedicated graphics when demanding applications call for it. This allows for greater flexibility and also conserves power when not required.
  • Display: Most modern laptops feature 13 inches (33 cm) or larger color active matrix displays based on CCFL or LED lighting with resolutions of 1280×800 (16:10) or 1366 × 768 (16:9) pixels and above. Some models use screens with resolutions common in desktop PCs (for example, 1440×900, 1600×900 and 1680×1050.) Models with LED-based lighting offer a lesser power consumption and wider viewing angles. Netbooks with a 10 inches (25 cm) or smaller screen typically use a resolution of 1024×600, while netbooks and subnotebooks with a 11.6 inches (29 cm) or 12 inches (30 cm) screen use standard notebook resolutions.
A size comparison of 3.5" and 2.5" hard disk drives
  • Removable media drives: A DVD/CD reader/writer drive is nearly universal on full-sized models, and is common on thin-and-light models; it is uncommon on subnotebooks and unknown on netbooks. CD drives are becoming rare, while Blu-Ray is becoming more common on notebooks.
  • Internal storage: Laptop hard disks are physically smaller—2.5 inches (64 mm) or 1.8 inches (46 mm) —compared to desktop 3.5 inches (89 mm) drives. Some newer laptops (usually ultraportables) employ more expensive, but faster, lighter and power-efficient flash memory-based SSDs instead. Currently, 250 to 500 GB sizes are common for laptop hard disks (64 to 512 GB for SSDs).
  • Input: A pointing sticktouchpad or both are used to control the position of the cursor on the screen, and an integrated keyboard is used for typing. An external keyboard and/or mouse may be connected using USB or PS/2 port, or Bluetooth (if present).
  • Ports: several USB ports, an external monitor port (VGADVI, mini-DisplayPort or HDMI), audio in/out, and an Ethernet network port are found on most laptops. Less common are legacy ports such as a PS/2 keyboard/mouse port, serial port or a parallel portS-video orcomposite video ports are more common on consumer-oriented notebooks.
  • Cooling: Waste heat from operation is difficult to remove in the compact internal space of a laptop. Early laptops used heat sinks placed directly on the components to be cooled, but when these hot components are deep inside the device, a large space-wasting air duct is needed to exhaust the heat. Modern laptops instead rely on heat pipes to rapidly move waste heat towards the edges of the device, to allow for a much smaller and compact fan and heat sink cooling system. Waste heat is usually exhausted away from the device operator, towards the rear or sides of the device. Multiple air intake paths are used, because some intakes can be blocked, such as when the device is placed on a soft conforming surface such as a chair cushion. Some designs with metal cases, like Apple's aluminum MacBook Pro and MacBook Air also employ the case of the machine as a "gigantic" heat sink, and rely on it to pump heat out of the device core. Secondary device temperature monitoring may reduce performance or trigger an emergency shutdown if it is unable to dissipate heat, such as if the laptop were to be left running and placed inside a carrying case. Such a condition has the potential to melt plastics or ignite a fire.

Advantages of Notebook Computer

  • Productivity: Using a laptop in places where a desktop PC can not be used, and at times that would otherwise be wasted. For example, an office worker managing their e-mails during an hour-long commute by train, or a student doing his/her homework at the university coffee shop during a break between lectures.
  • Immediacy: Carrying a laptop means having instant access to various information, personal and work files. Immediacy allows better collaboration between coworkers or students, as a laptop can be flipped open to present a problem or a solution anytime, anywhere.
  • Up-to-date information: If a person has more than one desktop PC, a problem of synchronization arises: changes made on one computer are not automatically propagated to the others. There are ways to resolve this problem, including physical transfer of updated files (using a USB flash memory stick or CDRs) or using synchronization software over the Internet. However, using a single laptop at both locations avoids the problem entirely, as the files exist in a single location and are always up-to-date.
  • Connectivity: A proliferation of Wi-Fi wireless networks and cellular broadband data services (HSDPAEVDO and others) combined with a near-ubiquitous support by laptops means that a laptop can have easy Internet and local network connectivity while remaining mobile. Wi-Fi networks and laptop programs are especially widespread at university campuses.
Other advantages of laptops:
  • Size: Laptops are smaller than desktop PCs. This is beneficial when space is at a premium, for example in small apartments and student dorms. When not in use, a laptop can be closed and put away.
  • Low power consumption: Laptops are several times more power-efficient than desktops. A typical laptop uses 20–90 W, compared to 100–800 W for desktops. This could be particularly beneficial for businesses (which run hundreds of personal computers, multiplying the potential savings) and homes where there is a computer running 24/7 (such as a home media server, print server, etc.)
  • Quiet: Laptops are often quieter than desktops, due both to the components (quieter, slower 2.5-inch hard drives) and to less heat production leading to use of fewer and slower cooling fans.
  • Battery: a charged laptop can continue to be used in case of a power outage and is not affected by short power interruptions and blackouts. A desktop PC needs a UPS to handle short interruptions, blackouts and spikes; achieving on-battery time of more than 20–30 minutes for a desktop PC requires a large and expensive UPS.
  • All-in-One: designed to be portable, laptops have everything integrated in to the chassis. For desktops (excluding all-in-ones) this is divided into the desktop, keyboard, mouse, display, and optional peripherals such as speakers.


Disadvantages of Notebook Computer

Compared to desktop PCs, laptops have disadvantages in the following fields:


Performance

While the performance of mainstream desktops and laptops is comparable, and the cost of laptops has fallen more rapidly than desktops, laptops remain more expensive than desktop PCs at the same performance level. The upper limits of performance of laptops remain much lower than the highest-end desktops (especially "workstation class" machines with two processor sockets), and "bleeding-edge" features usually appear first in desktops and only then, as the underlying technology matures, are adapted to laptops.

Upgradeability

Upgradeability of laptops is very limited compared to desktops, which are thoroughly standardized. In general, hard drives and memory can be upgraded easily. Optical drives and internal expansion cards may be upgraded if they follow an industry standard, but all other internal components, including the motherboard, CPU and graphics, are not always intended to be upgradeable. IntelAsusCompal, Quanta and some other laptop manufacturers have created the Common Building Block standard for laptop parts to address some of the inefficiencies caused by the lack of standards.
The reasons for limited upgradeability are both technical and economic. There is no industry-wide standard form factor for laptops; each major laptop manufacturer pursues its own proprietary design and construction, with the result that laptops are difficult to upgrade and have high repair costs. With few exceptions, laptop components can rarely be swapped between laptops of competing manufacturers, or even between laptops from the different product-lines of the same manufacturer.
Some upgrades can be performed by adding external devices, either USB or in expansion card format such as PC Card. Devices such as sound cards, network adapters, hard and optical drives, and numerous other peripherals are available, but these upgrades usually impair the laptop's portability, because they add cables and boxes to the setup and often have to be disconnected and reconnected when the laptop is on the move.